内页banner
Beneficiation
  • Causes and Solutions Affecting Low Efficiency of Mineral Processing! Causes and Solutions Affecting Low Efficiency of Mineral Processing! May 31, 2024
    1. Which links in the mineral processing process are likely to affect efficiency? In the mineral processing technology, multiple links may affect the mineral processing efficiency, and the following links are more likely to have a significant impact on the mineral processing efficiency: (1) Pre-election preparation stage: Crushing and Screening: Ore crushing and screening are key steps before mineral processing, which directly affect the efficiency and effect of subsequent mineral processing. In the crushing operation, if the crusher is improperly selected or operated, it may lead to insufficient or excessive crushing of the ore, affecting the efficiency of subsequent grinding and mineral processing. Screening is used to classify the crushed ore according to particle size to provide suitable raw materials for the processing. Grinding and Classification: Grinding is the continuation of the ore crushing process, and its purpose is to separate various useful mineral particles in the ore into monomers for selection. The selection of grinding mills and the control of the grinding process are crucial to the efficiency of mineral processing. The classification operation affects the classification particle size and processing capacity by adjusting parameters such as the size of the classification area, the height of the overflow weir and the speed of the spiral, thereby affecting the efficiency of mineral processing. Selection stage: The properties of the ore, the selection of the beneficiation equipment and the selection of the beneficiation method will affect the efficiency of the beneficiation stage. For example, the particle size of the mineral has an important influence on the flotation efficiency. Too fine a particle size will deteriorate the flotation effect. The selection of the flotation machine speed will also affect the stirring intensity of the slurry and the flotation effect. Dehydration stage after selection: The concentrate obtained by wet beneficiation usually contains a lot of water. The efficiency of the dehydration stage directly affects the quality and output of the concentrate. The dehydration stage includes processes such as concentration, filtration and drying. The effects of these processes are affected by factors such as equipment performance, operation level and the properties of the original ore. Slurry concentration: Appropriate pulp concentration has an important impact on flotation efficiency. Within a certain range, increasing pulp concentration is conducive to the collision and contact between minerals and reagents, thereby improving flotation efficiency. However, excessive pulp concentration will increase reagent consumption, deteriorate aeration effect, and reduce flotation efficiency. Operation and management: The skill level and management level of operators also have an important impact on mineral processing efficiency. Modern and digital management methods can optimize the mineral processing process and improve production efficiency. At the same time, strengthening the management and awareness of mining companies and avoiding management and awareness deviations are also important measures to improve mineral processing efficiency. To sum up, many links in the mineral processing process may affect the efficiency, but factors such as the preparation stage before mineral processing, the separation stage, the dehydration stage after mineral processing, as well as slurry concentration and operation management have the most significant impact on mineral processing efficiency. By optimizing these links and factors, the mineral processing efficiency can be significantly improved, production costs can be reduced, and the sustainable development of the mine can be achieved. 2. In order to optimize the links that affect efficiency in the mineral processing process, we can consider and implement them from the following aspects: (1) Grinding and grading operations: Optimize grinding process parameters: According to the characteristics of the ore, study the grinding index and formulate appropriate grinding process parameters. For the ore dressing plant with "over-grinding" phenomenon, selective grinding technology can be considered. Use efficient grading equipment: Although spiral classifiers are commonly used, their grading efficiency is generally only 20% to 40%. Consider introducing efficient grading equipment such as hydrocyclones or high-frequency vibrating fine screens to improve grading efficiency. However, attention should be paid to the stability of hydrocyclones. (2) Selection of work: Select or improve mineral processing equipment: In flotation operations, the selection of flotation machines is crucial. According to the characteristics of the ore and the flotation process, select or design a suitable flotation machine. At the same time, pay attention to the development of flotation reagents and processes, and adopt the latest flotation technology and reagents. Optimize flotation conditions: According to the properties of the ore, adjust the parameters such as pulp concentration, stirring intensity, and aeration volume during the flotation process to obtain the best flotation effect. (3) Dehydration operation: Introduce advanced dehydration equipment: such as disc vacuum filter, which not only has large processing capacity and good dehydration effect, but also has low energy consumption. Optimize the dehydration process: By adjusting various links in the dehydration process, such as pre-dehydration, filter pressing, etc., the dehydration efficiency can be improved and the moisture content in the concentrate can be reduced. (4) Slurry concentration control: Real-time monitoring and adjustment: By real-time monitoring of pulp concentration, timely adjust the amount of water added during grinding and flotation to ensure that the pulp concentration is within the optimal range. Optimize the use of reagents: During the flotation process, adjust the amount and type of reagents according to the pulp concentration to obtain the best flotation effect. (5) Operation and management: Improve operator skills: Through training and skill improvement, ensure that operators have the necessary mineral processing knowledge and skills and can operate mineral processing equipment proficiently. Introduce a modern management system: Use a digital and automated management system to monitor all aspects of the mineral processing process in real time to improve production efficiency and product quality. Strictly follow the principles of comprehensiveness and pertinence to carry out equipment transformation to ensure that the transformation work can truly improve economic benefits and production efficiency. (6) Strengthen the management of mining companies: Correct the deviations in the management and cognition of mining companies, ensure that managers have geological knowledge and mineral processing experience, and avoid non-geological personnel from conducting mineral processing according to the management model of other industries. Establish a reasonable assessment mechanism, avoid taking economic benefits as the only criterion, and ensure that the basic status of geological exploration work is valued. Through the implementation of the above measures, the links that affect efficiency in the mineral processing process can be optimized, the mineral processing efficiency can be improved, the production cost can be reduced, and the sustainable development of the mine can be achieved. (7) Continuous research and innovation: Encourage and support scientific researchers to conduct research and innovation in mineral processing technology, and continuously develop new mineral processing methods and processes. Strengthen exchanges and cooperation with other countries and regions, and introduce advanced mineral processing technology and equipment. At the same time, in view of the above-mentioned problem of low mineral processing efficiency, the introduction of MINGDE mineral processing equipment can greatly improve the mineral processing efficiency. Its value is mainly reflected in the following aspects: High-precision identification and sorting: MINGDE optoelectronic beneficiation equipment, such as the MINGDE AI sorter, can accurately identify multiple characteristics of non-metallic ores, including color, texture, shape, gloss, etc. This high-precision recognition technology enables ores to be accurately classified and screened, thereby improving the accuracy and efficiency of beneficiation. High efficiency sorting: The equipment has high-speed processing capabilities and can quickly complete the sorting of a large number of non-metallic ores. For example, the heavy-duty visible light artificial intelligence sorting machine product launched by MINGDE Optoelectronic has a sorting and processing capacity of up to 100 tons/hour, greatly improving production efficiency. Energy saving: MINGDE Optoelectronic mineral processing equipment achieves more crushing and less grinding by pre-sorting the granular ore, effectively reducing energy consumption. This optimization can not only improve production efficiency, but also reduce mineral processing costs and improve the economic and ecological benefits of the mineral processing plant. Environmental friendly: Compared with traditional physical and chemical beneficiation, the only energy consumption of photoelectric beneficiation is electricity consumption, and it has zero pollution to the environment. This green beneficiation method meets the current requirements of environmental protection and contributes to the sustainable development of mining production. High level of intelligence: With the development of computer technology and artificial intelligence technology, the intelligence level of Mingde Optoelectronics' mineral processing equipment has been continuously improved. This intelligent equipment can better adapt to the sorting needs of different types and complex ore structures, and improve the flexibility and adaptability of mineral processing. In summary, Mingde Optoelectronics' mineral processing equipment provides strong support for improving mineral processing efficiency through its advantages in high-precision identification, high-efficiency sorting, energy saving and consumption reduction, green environmental protection and high intelligence level. These advantages not only help to improve the efficiency and benefits of mining production, but also help to promote the green, intelligent and sustainable development of mining production.    
  • Application and Advantages of MINGDE AI Sorter in Non-metallic Ores Application and Advantages of MINGDE AI Sorter in Non-metallic Ores Jun 03, 2024
    Non-metallic ores are important resources for the national economy. Ore sorting and processing are of great significance to improving resource utilization and optimizing industrial structure. With the rapid development of AI technology, MINGDE AI sorting machine has shown strong application potential and advantages in the field of non-metallic ore sorting. This article will give a detailed overview of the application of MINGDE AI sorting machine in non-metallic ores, including its technical principles, application characteristics, actual effects and future development trends, in order to provide reference and reference for the intelligent upgrading of the non-metallic ore industry. 1. Technical principles and characteristics of MINGDE AI sorting machine MINGDE AI sorting machine uses advanced AI and computer vision technology to identify and analyze images of non-metallic ores through deep learning algorithms. The equipment uses high-speed cameras to capture the texture, color, shape, gloss, texture and other characteristic information of the ore surface, and uses powerful computing power to process and analyze this information in real time, thereby achieving accurate sorting of non-metallic ores. MINGDE AI sorting machine has the following salient features: High-precision identification: MINGDE AI sorting machine can accurately identify multiple characteristics of non-metallic ores, including color, texture, shape, gloss, etc., thereby achieving accurate classification and screening of ores. High-efficiency sorting: This equipment has high-speed processing capabilities and can quickly complete the sorting of large quantities of non-metallic ores, significantly improving production efficiency. Automated operation: MINGDE AI sorting machine realizes the automated sorting process, reduces manual intervention, reduces labor intensity, and improves production safety. Flexible configuration: The equipment can be flexibly adjusted according to the sorting requirements of different non-metallic ores. It has strong adaptability and can be widely used in various non-metallic ore sorting scenarios.   2. Application of MINGDE AI Sorting Machine in Non-metallic Ores Ore sorting and screening There are many types of non-metallic ores, and different types of ores have significant differences in composition, use and value. MINGDE artificial intelligence sorting machine can accurately classify and screen the ores according to their surface characteristics, and effectively separate the ores and veins in different non-metallic ores, providing convenience for subsequent processing and utilization. Impurity removal and purification Non-metallic ores often contain various impurities, which not only affect the quality of the ore, but also increase the difficulty and cost of subsequent processing. MINGDE AI sorting machine can accurately identify and remove impurities in the ore, improve the purity of the ore, and provide high-quality raw materials for subsequent processing. Particle size analysis and control The particle size of non-metallic ores has an important influence on their performance and application areas. MINGDE AI sorting machine can adjust the corresponding parameters according to application requirements, and perform precise control as required to produce ore products that meet specific requirements. 3. Analysis of the application effect of MINGDE AI sorting machine The application of MINGDE AI sorting machine in non-metallic ores has achieved remarkable results. First, the equipment improves the sorting accuracy and efficiency of non-metallic ores, making ore resources more fully utilized and reducing resource waste. Secondly, through the automated sorting process, manual intervention and labor intensity are reduced, and production safety and efficiency are improved. In addition, MINGDE AI sorter can also be flexibly configured and optimized according to the characteristics of different non-metallic ores, improving the flexibility and adaptability of the sorting process. 4. Future development trend of MINGDE AI sorting machine in non-metallic ores With the continuous advancement of artificial intelligence technology and the expansion of application scenarios, the application of MINGDE AI sorting machine in the field of non-metallic ores will show the following development trends: Technological innovation continues to accelerate With the continuous innovation and development of artificial intelligence technologies such as deep learning and computer vision, the recognition accuracy and processing speed of Mingde artificial intelligence sorting machine will be further improved, providing more efficient and accurate solutions for the sorting of non-metallic ores. Wider application scenarios MINGDE AI sorting machine is not only used in traditional non-metallic ore sorting scenarios, but can also be expanded to more fields. Ores and materials with specific surface characteristics can be sorted. At the same time, the equipment will also be linked with other intelligent equipment and systems to build a more complete non-metallic ore intelligent sorting system. The level of intelligence continues to improve With the integration and application of technologies such as big data and cloud computing, MINGDE AI sorting machine will realize a more intelligent sorting process. By collecting and analyzing sorting data in real time, the equipment can continuously optimize the sorting algorithm and parameter settings to improve sorting accuracy and efficiency. At the same time, the intelligent sorting system will also have adaptive and self-learning capabilities, and can automatically adjust and optimize according to the characteristics of different non-metallic ores. https://www.mdoresorting.com/mingde-ai-sorting-machine-separate-quartzmicafeldspar-from-pegmatite 5. Conclusion The application of MINGDE AI sorting machine in the field of non-metallic ores provides strong support for the effective utilization of ore resources and industrial upgrading. Through the characteristics of high-precision identification, high-efficiency sorting and automated operation, the equipment significantly improves the sorting efficiency and accuracy of non-metallic ores, reduces resource waste and production costs. In the future, with the continuous innovation of technology and the expansion of application scenarios, MINGDE AI sorting machine will play a more important role in the field of non-metallic ores, and promote the intelligent upgrading and sustainable development of the industry. However, we should also recognize that the application of artificial intelligence technology in the field of non-metallic ore sorting still faces some challenges and limitations. For example, the identification and processing of some complex ores may require more advanced algorithms and technical support; therefore, we need to continue to increase research and development efforts to improve the technical level and performance of MINGDE AI sorting machines to promote their wider application in the field of non-metallic ores. In summary, as an important technological achievement in the field of non-metallic ore sorting, MINGDE AI sorting machine has broad application prospects and is full of potential. We have reason to believe that in the future development, INGDE AI sorting machine will make greater contributions to the intelligent upgrading and sustainable development of the non-metallic ore industry with its unique advantages and characteristics.    
  • How to Better Select Ore Based on Ore Characteristics? How to Better Select Ore Based on Ore Characteristics? Jun 04, 2024
    As the core link of ore utilization in the ore industry, ore sorting plays a vital role in improving ore grade and recovery rate. However, with the reduction of high-grade and easy-to-mine ores and the increasing cost of ore sorting, these are two major problems that plague mining companies. Therefore, how to adopt appropriate ore dressing methods and reduce ore dressing costs have become issues that companies need to solve urgently. In order to achieve the best ore processing effect, mining companies can reduce the cost of ore sorting by choosing the ore sorting process. At the beginning of the process design, it is necessary to select according to the ore characteristics and design a suitable and efficient ore dressing process. At the same time, due to the requirements of energy conservation and environmental protection, energy-saving and environmentally friendly ore sorting technology should be adopted to reduce energy consumption and environmental pollution, and reduce ore processing costs. First of all, the ores can be divided into the following categories according to their characteristics: 1. Physical characteristics of ore The physical characteristics of ore are mainly divided into color, shape, texture, hardness, magnetism, density, etc. Different beneficiation methods can be selected according to the physical characteristics of the ore. For ores with large differences in mineral density, such as barite, hematite, asbestos, mica, kaolin, etc., heavy media can be used for beneficiation; magnetic separation is often used for magnetite and pyrrhotite with strong magnetism, semi-pseudo-hematite with medium magnetism, some ilmenite, chromite, and weakly magnetic hematite and rhodochrosite; fluorite, talc, wollastonite, silica, lithium ore, quartz, potassium feldspar, etc. with large differences in appearance characteristics such as color, texture, shape, and gloss often use photoelectric separation. 2. Chemical characteristics of ore Different ores have different chemical characteristics, such as composition, acidity and alkalinity. For example, copper oxide ore is often separated and flotated, while gold ore is extracted by amalgamation, cyanide, thiourea, high temperature chlorination and other methods. 3. Structural characteristics of ore Ore structure refers to the characteristics of mineral particles in the ore:the shape, relative size, inter-embedded relationship of mineral particles or the inter-embedded relationship between mineral particles and mineral aggregates. For example, for impregnated copper-sulfur ore, the preferential flotation process is adopted, and the tailings after copper flotation must be flotted with sulfur again. 4. Ore Origin Environmental Characteristics Different types of ores are formed in different production environments. For example, the Yuanshanzi nickel-molybdenum ore is of sedimentary metamorphic hydrothermal transformation type. According to the characteristics of the ore, rock crushing, roasting, and flotation with reagents are selected. For example, the sedimentary barite ore in Jingtieshan, Huashugou, Sunan, Gansu and Baiyuxiacun, Sichuan, as well as the hydrothermal barite ore associated with sulfide ores and fluorite, are separated by flotation in addition to gravity separation. Ore pre-selection experiment Ore dressing experiments are an important basis for formulating correct ore sorting technology and determining ore sorting equipment. Through ore dressing experiments, ore dressing processes can be optimized and ore dressing costs can be reduced. When conducting ore dressing experiments, a reasonable test plan should be formulated according to ore characteristics and ore sorting requirements, the test process should be optimized, and the test efficiency and accuracy should be improved. During the test, the following points should be noted: 1. Experimental samples should be representative samples of the ore body to ensure the accuracy and reliability of the experiment. 2. The experiment simulated the actual production conditions as much as possible. 3. Conduct statistics and analysis on experimental data, optimize mineral processing process parameters and equipment, and improve mineral processing efficiency and recovery rate. How to choose mineral processing equipment https://www.mdoresorting.com/heavy-duty-ai-ore-sorting-machine-ore-sorter-mineral-separator-sorting-38cm-particles Ore sorting equipment is the key equipment in the mineral processing process. When selecting equipment, it is necessary to fully consider the characteristics and requirements of the ore to select the appropriate equipment. In the process of selecting equipment, performance and cost should be given priority, and factors such as equipment life, wearing parts and operation and maintenance costs should also be considered. At the same time, the choice of manufacturer is also very important, whether it is a professional provider of mining equipment. For example, MINGDE Optoelectronics specializes in the research and development and production of photoelectric mineral processing equipment. Develop a reasonable mineral processing process Formulating a reasonable process during the mineral processing is the key to ensuring the mineral processing effect and reducing the mineral processing cost. Reasonable control of each link can effectively reduce losses and operation and maintenance costs. The specific measures are as follows: 1. Reduce equipment overload and wear. 2. Strictly control the operating parameters of mineral processing equipment. 3. Formulate scientific and reasonable maintenance plans for different equipment, and conduct regular inspections and maintenance to effectively extend the service life of the equipment. In summary, reducing the cost of mineral processing and mineral processing technology should be done from multiple aspects and angles, including reasonable mineral processing process, suitable equipment, control of mineral processing process, rigorous mineral processing experiments, etc. Only by combining various factors,we can the reduction of mineral processing costs and the sustainable development of mining enterprises be achieved.
  • Classification, Uses and Sorting Processes of Various Types of Ores! Classification, Uses and Sorting Processes of Various Types of Ores! Jun 08, 2024
    The classification and use of ores are very wide. We classify them based on many factors such as the chemical composition, physical properties and industrial applications of minerals. The following are the types of metal ores and non-metallic ores that can be roughly sorted. Metal ore Metal ores are ores containing metal elements or metal compounds, and are mainly used to extract metals. Depending on the metals they contain, metal ores can be subdivided into the following categories: 1. Precious metal ores: such as gold, silver, platinum group metal ores, etc., are mainly used in the manufacture of jewelry, currency reserves and some high-tech products. 2. Non-ferrous metal ores: including copper, lead, zinc, aluminum, etc., which are widely used in wires and cables, building materials, automobile manufacturing, aircraft manufacturing, electronic products and other fields. 3. Ferrous metal ores: such as iron ore, manganese ore, and chromium ore, which are mainly used in the production of steel and other alloys. 4. Rare metal ores: such as tantalum, niobium, lithium, etc., are crucial to high-tech industries such as electronics, aerospace, and new energy vehicles. 5. Radioactive ores: such as uranium ore and thorium ore, which are mainly used in nuclear power generation and medical fields. After mining, crushing, beneficiation and refining, these ores can be refined into metals, which are processed into various products and widely used in various industries such as construction, machinery manufacturing, electronics, transportation, aerospace, etc. Non-metallic ores Non-metallic ores contain no or almost no metal elements. They either provide industrial raw materials or are used as decorative and building materials. 1. Chemical raw material ores: such as phosphate rock, potash, limestone, etc., used in the manufacture of fertilizers and chemical products. 2. Gemstones and decorative stones: such as diamonds, rubies, jade, marble, granite, etc., used in jewelry and architectural decoration. 3. Building material ores: such as gypsum, quartz sand, and limestone, used in cement, glass manufacturing and the construction industry. 4. Ceramic and refractory ores: such as kaolin and clay, used to make ceramic utensils and high-temperature resistant materials. 5. Energy minerals: such as coal, oil, and natural gas. Although they do not strictly belong to the traditional mineral classification, they are also important natural resources and are mainly used for energy supply. In addition to being used as a building material, it is also used to manufacture chemicals, medicines, cosmetics, ceramic products, glass products, etc. It is also widely used in agriculture, environmental protection and high-tech industries. In summary, ores are various and have a wide range of uses. From metal ores to non-metallic ores, from energy ores to construction ores and chemical raw material ores, they all play an important role in their respective fields. The mining and utilization of ores is one of the foundations of modern industrial society. However, the mining process needs to consider environmental protection and sustainable development. With the advancement of science and technology and the development of industry, human demand for ores will continue to increase, and the mining and utilization of ores will become more efficient and environmentally friendly. In order to make full use of various metal and non-metallic ore resources, suitable mineral processing technology is selected for separation in combination with the physical and chemical characteristics of the ore. At present, the common mineral processing methods are mainly the following: Flotation: It is a method of separation by treating the physical and chemical properties of the ore surface to make the minerals selectively attach to bubbles. In the process of mineral processing, especially in the treatment of non-ferrous metal ores (such as copper, lead, zinc, sulfur, molybdenum, etc.), flotation is widely used. In addition, some ferrous metals, rare metals and non-metallic ores (such as graphite ore, apatite, etc.) can also be treated by flotation. Gravity separation: It is a method of separation based on the relative density (also called specific gravity) of minerals. By applying fluid dynamics and various mechanical forces in a moving medium (such as water or air), the concentrators of different densities can create suitable loose stratification and separation conditions, thereby achieving the separation of mineral particles of different densities. Magnetic separation: It is a method of separating ores by using the magnetic difference of minerals to generate different forces in the magnetic field of the magnetic separator. It is mainly used for the separation of ferrous metal ores (such as iron, manganese, and chromium), and can also be used for the separation of non-ferrous metal and rare metal ores. Electrostatic separation: It is a separation method based on the difference in the electrical conductivity of minerals. By placing the minerals in a high-voltage electric field, the electrostatic force acts differently due to the different electrical conductivity of the minerals, thereby achieving the separation of minerals. This method is mainly used for the separation of rare metals, non-ferrous metals and non-metallic ores, especially in the separation of sub-mixed coarse concentrates, such as scheelite and cassiterite, zircon, tantalite and niobium ore. Chemical beneficiation: It is a beneficiation technology that uses chemical methods to change the mineral composition and then enriches the target components through other methods. For example, copper ore containing malachite can be leached with dilute sulfuric acid to convert malachite into copper sulfate solution. By replacing the copper ions in the solution with iron filings, metallic copper (sponge copper) can be obtained. Chemical beneficiation is one of the effective methods for processing and comprehensively utilizing some poor, fine, and impure mineral raw materials that are difficult to be selected. It is also one of the important ways to make full use of mineral resources, solve the problems of wastewater, waste residue, and waste gas treatment, realize waste recycling, and protect the environment. Microbial beneficiation: also known as bacterial beneficiation, is a beneficiation method that uses microorganisms such as iron-oxidizing bacteria, sulfur-oxidizing bacteria, and silicate bacteria to remove iron, sulfur, silicon and other elements from ores. By using iron-oxidizing bacteria to oxidize iron, sulfur-oxidizing bacteria to oxidize sulfur, and silicate bacteria to decompose silicon in bauxite, the purpose of desulfurization, iron removal and silicon removal can be achieved. In addition, microbial beneficiation can also be used to recover metals such as copper, uranium, cobalt, manganese, and gold. https://www.mdoresorting.com/mingde-ai-sorting-machine-separate-phosphorite-ore Photoelectric beneficiation: It is a beneficiation method that uses the physical characteristics of the ore to be beneficiated and the gangue to identify and sort. It uses a combination of machinery and electricity to separate minerals by imitating the action of hand selection. It uses the differences in the reflection and transmittance of light of different minerals, such as color, texture, shape, gloss, spots, density and other characteristic differences for identification and sorting. The ore is mainly separated after passing through the feeding system, photoelectric system, electric control system and sorting system. As a leader in the photoelectric mineral processing industry, Mingde Optoelectronics has launched a series of equipment, involving five series and more than 20 types of equipment, mainly artificial intelligence sorting machines, ore color sorting machines, mineral sand sorting machines, X-ray intelligent sorting machines, foreign body removal robots and other products. At present, it is widely used in metal and non-metallic minerals such as quartz, potassium feldspar, calcite, calcium carbonate, dolomite, fluorite, talc, wollastonite, bauxite, pegmatite quartz, limestone, calcium oxide, sponge titanium, silicon slag, gold mine, pebbles, phosphate rock, silica, brucite, tungsten tailings, coal gangue, coal-bearing kaolin, etc.!
  • Application of Photoelectric Ore Separation Technology in Low-Grade Ore Resource Processing Application of Photoelectric Ore Separation Technology in Low-Grade Ore Resource Processing Jun 29, 2024
    Introduction Photoelectric ore sorting technology is an emerging ore processing technology that uses optical property differences to sort ore, and is particularly suitable for the effective processing of low-grade ore resources. This article will discuss in detail the latest progress of photoelectric ore sorting technology and its application in the processing of low-grade ore resources. Overview of Photoelectric Ore Sorting Technology Photoelectric ore sorting technology is mainly based on the differences in the optical properties of minerals, such as color, gloss, transparency, etc., through the illumination of a light source of a specific wavelength, and with the help of high-precision photoelectric sensors to identify and separate different minerals. This technology has the advantages of fast sorting speed, no need to add chemical reagents, and green environmental protection, and is especially suitable for the purification of low-grade ores. Application of Photoelectric Ore Sorting Technology in the Processing of Low-grade Ore Resources Low-grade ores usually refer to those ores whose grades are not enough for direct use, and their grades need to be improved through mineral processing or other treatment methods. Photoelectric ore sorting technology can improve the feed grade before the ore is crushed or ground, thereby reducing the cost of mineral processing and the load of equipment. Advantages of Photoelectric Ore Sorting Technology High efficiency: Photoelectric sorting technology can quickly remove a large amount of useless gangue, reduce the pressure of subsequent mineral processing links, and improve sorting efficiency. Low cost: Compared with traditional physical mineral processing and chemical mineral processing, the power consumption cost of photoelectric mineral processing is about 1 yuan/ton, which is much lower than traditional methods. Green and environmental protection: Photoelectric ore dressing has zero pollution to the environment and is a greener ore dressing method. 10 Technological progress: With the development of artificial intelligence technology, the intelligence level of photoelectric sorting equipment has been continuously improved, and it can handle more types of ores. https://www.mdoresorting.com/mingde-ai-sorting-machine-separate-quartzmicafeldspar-from-pegmatite Specific applications As a leading enterprise in the ore photoelectric sorting industry, MINGDE Optoelectronics' ore sorting machines are widely used in metal and non-metallic minerals. Over the years, MINGDE Optoelectronics has been professionally researching ore sorting and has made breakthroughs in many technologies. Among them, the AI ​​intelligent ore sorting machine launched for the first time in China uses advanced deep convolutional neural network technology to extract ore surface features from multiple angles, greatly expanding the types of sorted ores and improving the accuracy of ore sorting, especially in the sorting of pegmatite-type quartz. Experiments have shown that MINGDE AI intelligent ore sorting machines are competent for all types of ore that can be identified by the naked eye. While ensuring the sorting accuracy, our company's heavy-duty machines have greatly improved the sorting output of ore, meeting the requirements of mining companies for large-scale ore sorting. https://www.mdoresorting.com/heavy-duty-ai-ore-sorting-machine-ore-sorter-mineral-separator-sorting-38cm-particles Future development of photoelectric ore sorting technology The future development of photoelectric ore sorting technology will focus on improving sorting accuracy and reliability, reducing costs, improving cost performance, and adapting to the sorting needs of more types and more complex ore structures. At the same time, photoelectric sorting technology will also be combined with other ore dressing technologies to form a more complete ore processing solution. Conclusion Photoelectric ore sorting technology has shown great potential in the processing of low-grade ore resources, which can effectively improve resource utilization, reduce ore dressing costs, and is beneficial to environmental protection. With the continuous advancement and innovation of technology, photoelectric ore sorting technology will play an increasingly important role in the mining field.  
  • Specific Applications and Future Prospects of Photoelectric Sorting Technology Specific Applications and Future Prospects of Photoelectric Sorting Technology Jul 03, 2024
    Overview of photoelectric sorting technology Photoelectric sorting technology is a technology that uses optical principles to automatically identify and classify materials. It detects the optical properties of materials, such as color, gloss, transparency, etc., through photoelectric sensors, and then determines whether it has the required characteristics through preset intelligent algorithms, and performs corresponding separation processing. This technology is widely used in industries such as mining, agriculture, food processing, and waste material recycling, especially in improving sorting efficiency and accuracy, reducing labor intensity, and reducing environmental pollution. Working principle of photoelectric sorting technology The working principle of photoelectric sorting technology involves several key components: light source system, sensor system, signal processing system, and execution system. First, the light source system provides light of different wavelengths to illuminate the material to be detected, so that the reflected light presents different colors. The sensor system, usually a linear array CCD sensor, captures these lights and converts them into electrical signals. The signal processing system processes these electrical signals, analyzes the characteristics of the materials through image processing algorithms, and classifies them according to preset standards. Finally, the execution system sorts the sorted materials, usually by high-speed airflow or robotic arms to exclude defective products and retain high-quality products. Application of photoelectric sorting technology in mining In the mining field, photoelectric sorting technology is mainly used for pre-sorting of ore to improve the overall grade of ore and reduce the cost of subsequent processing. For example, in the process of phosphate ore sorting, photoelectric sorting technology can effectively identify and remove low-grade ore and debris, thereby improving the efficiency of mineral processing and reducing energy consumption. In addition, this technology can also be used to process phosphate resources with fine particle size and complex embedded morphology, so that resources that were originally difficult to develop and utilize economically and efficiently can be fully utilized. Advantages and challenges of photoelectric sorting technology The advantages of photoelectric sorting technology lie in its high precision, high efficiency and environmental protection characteristics. It can complete the sorting of a large number of materials in a short time without adding chemical reagents, reducing pollution to the environment. However, the technology also faces some challenges, such as adapting to the sorting needs of more types and complex ore structures, improving the stability and anti-interference ability of the system, and reducing costs. Future development of photoelectric sorting technology With the continuous advancement of technology, photoelectric sorting technology is expected to further improve recognition accuracy and stability in the future, expand the scope of application, and play a greater role in mining and other fields. For example, by combining technologies such as artificial intelligence and big data analysis, the photoelectric sorting system will become more intelligent and automated, and can better adapt to different working environments and sorting requirements. Application of MINGDE Optoelectronic Sorting Technology Hefei MINGDE Optoelectronic Technology Co., Ltd., as a leading enterprise in the field of mining sorting in China, has taken the lead in introducing artificial intelligence, big data sorting and other technologies in the field of ore photoelectric sorting, expanding the variety of ore sorting by photoelectric sorting machines, and making the sorting effect more accurate. The heavy-duty machine developed by the company can sort ores with larger particle sizes, which brings about greater output and meets the requirements of mining companies for large-scale ore sorting. https://www.mdoresorting.com/wet-intelligent-minerals-separator-ore-sorting-machine-leading-manufacturer-of-china Since its establishment in 2014, the company has been working hard in the field of ore sorting for ten years. The staff visited various mining areas in China on the spot, fully communicated with various mining companies, and deeply understood the various requirements of the mines for sorting equipment. The overall structure of the MINGDE sorting machine adopts a split structure to avoid the influence of feeding vibration on the main part of the machine sorting, ensuring the accuracy of sorting; using a conveyor belt instead of a chute reduces the trouble of frequent replacement of wearing parts of the chute machine. The whole machine is coated with an anti-corrosion coating, which improves the adaptability of the machine to the harsh working environment of high dust, high pollution and high corrosion in the mining industry. MINGDE Optoelectronic Technology Co., Ltd. has always believed that integrity makes MINGDE a success and MINGDE creates the best corporate mission. We are willing to work together with friends from all walks of life to achieve the long-term development of mining intelligence and automation.
  • Research and Application of Pegmatite Quartz Research and Application of Pegmatite Quartz Jul 09, 2024
    Overview Pegmatite quartz refers to high-purity quartz formed in pegmatite. Pegmatite is a special granite rock, usually composed of coarse to huge quartz crystals. The quartz in these rocks usually has a larger crystal size and a lower impurity content. Formation process of pegmatite quartz The formation of pegmatite quartz is a complex process inside the earth, involving many geological processes such as magmatic activity, metamorphism, and tectonic movement. Next, we will discuss this process in detail from different angles. Magmatic activity and the formation of pegmatite quartz The formation of pegmatite quartz is closely related to magmatic activity. During the intrusion evolution of magma, due to changes in temperature, pressure and other conditions, hydrothermal fluids rich in SiO2 are differentiated. These hydrothermal fluids penetrate into the surrounding metamorphic rock system along the bedding and cracks, or invade along the contact fracture zone of the previous magmatic rock to form vein quartz ore bodies. Metamorphism and the formation of pegmatite quartz The hydrothermal fluid produced by regional metamorphism or mixed lithification is also an important factor in the formation of pegmatite quartz. Strong magmatic activity and tectonic movement provide heat sources for metamorphism. When water-containing igneous rocks and basement protoliths are metamorphosed, a large amount of water is released to form metamorphic hydrothermal fluids. These ore-bearing solutions migrate along the ductile shear zone under the action of tectonic stress. Due to changes in temperature and pressure conditions, SiO2 is supersaturated and deposited to form vein quartz. Tectonic environment and the formation of pegmatite quartz The formation of pegmatite quartz is closely related to a specific tectonic environment. For example, pegmatite deposits are formed in a stable tectonic environment at the top of granite, formed by the recrystallization of the surrounding granite and the decomposition of the mineral components that make up the granite. Details of the formation of pegmatite quartz The details of the formation of pegmatite quartz can be revealed by studying the fluid inclusions inside it. Fluid inclusion microscopic analysis shows that in the process of wall crystallization, the brine H2O-NaCL-KCL-(CO2,N2) type fluid (about 20wt.% NaCL and about 3wt.% KCL) is saturated, and in the process of magmatic hydrothermal crystallization, multiphase cassiterite mineralization forms large microcline crystals in the wall belt, and is combined with quartz, F-poor black mountain rock, and carbonate- and boron-rich manganese fluoroapatite in the core area. World distribution Pegmatite quartz is a high-quality quartz resource. Due to its special formation environment and purity, it has extremely important applications in industry and high-tech fields. The world-renowned pegmatite quartz resources are mainly distributed in the United States, Brazil, Canada, Australia and China. Among them, the Spruce Pine deposit in the United States is famous for its extremely low quartz impurity element content and excellent quality. It has long provided a large amount of high-purity quartz sand to the world. It is an important raw material for semiconductors, precision optical glass, photovoltaics, lighting and other industries. Spruce Pine Deposit, USA The Spruce Pine Deposit is located in western North Carolina, USA. It has a mining history of more than 100 years and is a globally recognized high-purity quartz sand raw material deposit. Its quartz sand products enjoy a very high reputation in the international market. Pegmatite Quartz Resources in Brazil Brazil is the world's largest country with high-purity quartz resources. Its ore type is mainly natural crystal, but due to mining facilities and ore quality, the actual mining and export volume is relatively small. Pegmatite Quartz Resources in Canada Canada's pegmatite quartz resources rank third in the world. The ore type is mainly vein quartz. The quality of its high-purity quartz resources is also very high, suitable as a raw material for high-purity quartz sand. Pegmatite Quartz Resources in China China's pegmatite quartz resources are mainly distributed in Henan, Xinjiang, Hubei, Jiangsu and other places. In recent years, mineral resources that can be used to extract ultra-high purity quartz sand have been discovered in the East Qinling-Dabie Orogenic Belt in Henan, showing huge prospecting potential. Pegmatite quartz resources in Australia Australia has abundant quartz resources, mainly distributed in northern Queensland, Victoria and Western Australia. The pegmatite quartz resources in these areas also provide the possibility for the production of high-purity quartz sand. Application fields of pegmatite quartz Pegmatite quartz has a wide range of applications in many fields due to its high purity and stability. The following are some of the main application areas:   Semiconductor industry: High-purity quartz is a key material for manufacturing semiconductor chips. It is used to make containers such as crucibles to ensure the purity of the chip manufacturing process. Fiber optic communication: Fiber optic is the infrastructure of modern communications, and high-purity quartz plays an important role in it because it can transmit high-speed optical signals without loss. Photovoltaic industry: In the manufacture of solar panels, high-purity quartz is used to make high-quality quartz glass, which is crucial to improving the efficiency of photoelectric conversion. Optical field: High-purity quartz is also used in precision optical devices. For example, in lenses and optical fibers, high-purity quartz is needed to ensure that the propagation of light is not disturbed. Electric light sources: In light bulbs and other electric light sources, high-purity quartz is used to make materials that are resistant to high temperatures and have good light transmittance. Building materials: Due to its strength and durability, pegmatite quartz is also used in building materials, such as in the production of and floor tiles. Jewelry industry: In some specific cases, pegmatite quartz may also be used in the jewelry industry, especially those quartz crystals with special optical effects. Purification technology of pegmatite quartz Pegmatite quartz usually has the characteristics of few impurities, stable quality, and low fluid inclusion content, so it has become an important raw material for the preparation of high-purity quartz sand. In recent years, with the rapid development of science and technology, especially in the fields of semiconductors, optical fiber communications, photovoltaics, etc., the demand for high-purity quartz sand has increased day by day. Therefore, the research and application of pegmatite quartz resources have received widespread attention. In recent years, with the advancement of science and technology, the sorting technology of pegmatite quartz has made significant progress, especially in the purification of high-purity quartz sand. Sorting equipment and technological progress The sorting equipment of pegmatite quartz mainly includes crushers, mills, screening machines, flotation machines, magnetic separators, etc. These equipment use different physical and chemical methods, such as mechanical crushing, grinding, gravity separation, flotation and magnetic separation, to separate quartz from other impurities. Crushing and grinding: Crushing equipment is used to crush raw quartz ore into small particles suitable for further processing. Commonly used crushing equipment includes jaw crushers, cone crushers and hammer crushers. Grinding is to further grind the ore through the grinding machine to achieve the ideal particle size distribution, in preparation for subsequent classification and flotation. Screening: Screening equipment such as spiral classifiers are used for particle classification and desludging processes. The particle size separation is achieved through the difference in the settling speed of particles of different sizes in the liquid. 8 Flotation: Flotation machines play a key role in the flotation process. By forming a large number of bubbles and using reagents to make the target minerals attached to the bubbles, it can be separated from other substances. 8 Magnetic separation: Magnetic separation equipment is used to remove iron-containing impurities from quartz sand. Commonly used magnetic separation equipment includes dry magnetic separators and wet magnetic separators. Photoelectric separation: Photoelectric separation is a method of identifying and separating the ore to be separated and the gangue by using the physical characteristics of the ore to be separated and the gangue. It uses a combination of mechanical and electrical separation to imitate the action of hand selection. The artificial intelligence sorting machine pioneered by Hefei Mingde Optoelectronics Technology Co., Ltd. is the first to introduce advanced technologies such as artificial intelligence and big data in the field of photoelectric mineral processing. It has obvious effects on the sorting of pegmatite quartz, with high sorting accuracy and large output. Latest research results The latest research results show that through the combined application of these equipment and technologies, high-purity quartz concentrate products can be obtained on a laboratory scale. For example, Zhengzhou Comprehensive Utilization Institute has successfully developed an original technology for processing and purifying high-purity quartz, and conducted laboratory sorting and purification experiments on granite pegmatite high-purity quartz ore, producing high-purity quartz concentrate products with SiO2 purity as high as 5N2 (99.9992%). Conclusiona In summary, pegmatite quartz is an extremely important mineral resource, and its application in high-tech industries is indispensable. With the advancement of technology and the increasing demand for high-purity materials, the mining and utilization of pegmatite quartz will become more extensive, and it will also have a profound impact on the development of related industr Overview Pegmatite quartz refers to high-purity quartz formed in pegmatite. Pegmatite is a special granite rock, usually composed of coarse to huge quartz crystals. The quartz in these rocks usually has a larger crystal size and a lower impurity content. Formation process of pegmatite quartz The formation of pegmatite quartz is a complex process inside the earth, involving many geological processes such as magmatic activity, metamorphism, and tectonic movement. Next, we will discuss this process in detail from different angles. Magmatic activity and the formation of pegmatite quartz The formation of pegmatite quartz is closely related to magmatic activity. During the intrusion evolution of magma, due to changes in temperature, pressure and other conditions, hydrothermal fluids rich in SiO2 are differentiated. These hydrothermal fluids penetrate into the surrounding metamorphic rock system along the bedding and cracks, or invade along the contact fracture zone of the previous magmatic rock to form vein quartz ore bodies. Metamorphism and the formation of pegmatite quartz The hydrothermal fluid produced by regional metamorphism or mixed lithification is also an important factor in the formation of pegmatite quartz. Strong magmatic activity and tectonic movement provide heat sources for metamorphism. When water-containing igneous rocks and basement protoliths are metamorphosed, a large amount of water is released to form metamorphic hydrothermal fluids. These ore-bearing solutions migrate along the ductile shear zone under the action of tectonic stress. Due to changes in temperature and pressure conditions, SiO2 is supersaturated and deposited to form vein quartz. Tectonic environment and the formation of pegmatite quartz The formation of pegmatite quartz is closely related to a specific tectonic environment. For example, pegmatite deposits are formed in a stable tectonic environment at the top of granite, formed by the recrystallization of the surrounding granite and the decomposition of the mineral components that make up the granite. Details of the formation of pegmatite quartz The details of the formation of pegmatite quartz can be revealed by studying the fluid inclusions inside it. Fluid inclusion microscopic analysis shows that in the process of wall crystallization, the brine H2O-NaCL-KCL-(CO2,N2) type fluid (about 20wt.% NaCL and about 3wt.% KCL) is saturated, and in the process of magmatic hydrothermal crystallization, multiphase cassiterite mineralization forms large microcline crystals in the wall belt, and is combined with quartz, F-poor black mountain rock, and carbonate- and boron-rich manganese fluoroapatite in the core area. World distribution Pegmatite quartz is a high-quality quartz resource. Due to its special formation environment and purity, it has extremely important applications in industry and high-tech fields. The world-renowned pegmatite quartz resources are mainly distributed in the United States, Brazil, Canada, Australia and China. Among them, the Spruce Pine deposit in the United States is famous for its extremely low quartz impurity element content and excellent quality. It has long provided a large amount of high-purity quartz sand to the world. It is an important raw material for semiconductors, precision optical glass, photovoltaics, lighting and other industries. Spruce Pine Deposit, USA The Spruce Pine Deposit is located in western North Carolina, USA. It has a mining history of more than 100 years and is a globally recognized high-purity quartz sand raw material deposit. Its quartz sand products enjoy a very high reputation in the international market. Pegmatite Quartz Resources in Brazil Brazil is the world's largest country with high-purity quartz resources. Its ore type is mainly natural crystal, but due to mining facilities and ore quality, the actual mining and export volume is relatively small. Pegmatite Quartz Resources in Canada Canada's pegmatite quartz resources rank third in the world. The ore type is mainly vein quartz. The quality of its high-purity quartz resources is also very high, suitable as a raw material for high-purity quartz sand. Pegmatite Quartz Resources in China China's pegmatite quartz resources are mainly distributed in Henan, Xinjiang, Hubei, Jiangsu and other places. In recent years, mineral resources that can be used to extract ultra-high purity quartz sand have been discovered in the East Qinling-Dabie Orogenic Belt in Henan, showing huge prospecting potential. Pegmatite quartz resources in Australia Australia has abundant quartz resources, mainly distributed in northern Queensland, Victoria and Western Australia. The pegmatite quartz resources in these areas also provide the possibility for the production of high-purity quartz sand. Application fields of pegmatite quartz Pegmatite quartz has a wide range of applications in many fields due to its high purity and stability. The following are some of the main application areas: Semiconductor industry: High-purity quartz is a key material for manufacturing semiconductor chips. It is used to make containers such as crucibles to ensure the purity of the chip manufacturing process. Fiber optic communication: Fiber optic is the infrastructure of modern communications, and high-purity quartz plays an important role in it because it can transmit high-speed optical signals without loss. Photovoltaic industry: In the manufacture of solar panels, high-purity quartz is used to make high-quality quartz glass, which is crucial to improving the efficiency of photoelectric conversion. Optical field: High-purity quartz is also used in precision optical devices. For example, in lenses and optical fibers, high-purity quartz is needed to ensure that the propagation of light is not disturbed. Electric light sources: In light bulbs and other electric light sources, high-purity quartz is used to make materials that are resistant to high temperatures and have good light transmittance. Building materials: Due to its strength and durability, pegmatite quartz is also used in building materials, such as in the production of and floor tiles. Jewelry industry: In some specific cases, pegmatite quartz may also be used in the jewelry industry, especially those quartz crystals with special optical effects. Purification technology of pegmatite quartz Pegmatite quartz usually has the characteristics of few impurities, stable quality, and low fluid inclusion content, so it has become an important raw material for the preparation of high-purity quartz sand. In recent years, with the rapid development of science and technology, especially in the fields of semiconductors, optical fiber communications, photovoltaics, etc., the demand for high-purity quartz sand has increased day by day. Therefore, the research and application of pegmatite quartz resources have received widespread attention. In recent years, with the advancement of science and technology, the sorting technology of pegmatite quartz has made significant progress, especially in the purification of high-purity quartz sand. Sorting equipment and technological progress The sorting equipment of pegmatite quartz mainly includes crushers, mills, screening machines, flotation machines, magnetic separators, etc. These equipment use different physical and chemical methods, such as mechanical crushing, grinding, gravity separation, flotation and magnetic separation, to separate quartz from other impurities. Crushing and grinding: Crushing equipment is used to crush raw quartz ore into small particles suitable for further processing. Commonly used crushing equipment includes jaw crushers, cone crushers and hammer crushers. Grinding is to further grind the ore through the grinding machine to achieve the ideal particle size distribution, in preparation for subsequent classification and flotation. Screening: Screening equipment such as spiral classifiers are used for particle classification and desludging processes. The particle size separation is achieved through the difference in the settling speed of particles of different sizes in the liquid. 8 Flotation: Flotation machines play a key role in the flotation process. By forming a large number of bubbles and using reagents to make the target minerals attached to the bubbles, it can be separated from other substances. 8 Magnetic separation: Magnetic separation equipment is used to remove iron-containing impurities from quartz sand. Commonly used magnetic separation equipment includes dry magnetic separators and wet magnetic separators. Photoelectric separation: Photoelectric separation is a method of identifying and separating the ore to be separated and the gangue by using the physical characteristics of the ore to be separated and the gangue. It uses a combination of mechanical and electrical separation to imitate the action of hand selection. The artificial intelligence sorting machine pioneered by Hefei Mingde Optoelectronics Technology Co., Ltd. is the first to introduce advanced technologies such as artificial intelligence and big data in the field of photoelectric mineral processing. It has obvious effects on the sorting of pegmatite quartz, with high sorting accuracy and large output. Latest research results The latest research results show that through the combined application of these equipment and technologies, high-purity quartz concentrate products can be obtained on a laboratory scale. For example, Zhengzhou Comprehensive Utilization Institute has successfully developed an original technology for processing and purifying high-purity quartz, and conducted laboratory sorting and purification experiments on granite pegmatite high-purity quartz ore, producing high-purity quartz concentrate products with SiO2 purity as high as 5N2 (99.9992%). Conclusiona In summary, pegmatite quartz is an extremely important mineral resource, and its application in high-tech industries is indispensable. With the advancement of technology and the increasing demand for high-purity materials, the mining and utilization of pegmatite quartz will become more extensive, and it will also have a profound impact on the development of related industries.  
  • Comprehensive Analysis of X-ray Intelligent Ore Sorting Machine Comprehensive Analysis of X-ray Intelligent Ore Sorting Machine Jul 27, 2024
    I. Overview X-ray intelligent ore sorting machine is an advanced equipment that uses X-ray technology combined with artificial intelligence algorithms to efficiently sort ore. It can realize the rapid and accurate identification and sorting of ore during ore processing, thereby improving the utilization rate of ore, reducing processing costs, and reducing the impact on the environment. II. Working Principle Intelligent ore sorting machine mainly uses X-ray technology, through the transmission ability of X-rays to the internal structure of ore, combined with advanced image processing algorithms and artificial intelligence technology, to achieve rapid identification and sorting of ore. Specifically, X-ray sorting technology can form Compton effect differences according to the different density, thickness, atomic sequence and other characteristics of ore, thereby realizing the separation of ore and waste rock. The technical advantage of intelligent ore sorting machine lies in its high-precision recognition ability and high degree of automation and intelligence. It can not only improve the processing efficiency of ore, but also reduce environmental pollution, which is in line with the trend of sustainable development of mining. III. Equipment Composition The X-ray intelligent ore sorting machine is mainly composed of the following parts: Vibration distribution system: responsible for evenly distributing the ore on the conveyor belt to ensure that the ore is laid flat in a single layer for efficient sorting. X-ray transmission detection system: including X-ray generators and receivers, used to transmit ore and analyze the internal structure and density differences of the ore. High-definition image recognition system: composed of high-brightness light source and high-definition digital camera, it images the surface features of the ore and provides auxiliary identification information. Computer software algorithm system: through deep learning technology, various characteristic information of ore is studied, and an ore sorting training model is constructed to achieve fast and accurate identification of ore data. Pneumatic mine waste separation system: through the air valve array driven by high-speed actuators, the ore is separated, the waste rock is blown into the waste rock trough, and the useful minerals fall into the sorting bin. https://www.mdoresorting.com/x-ray-manganese-vanadium-sorting-machine IV. Workflow The workflow of the X-ray intelligent ore sorter mainly includes the following steps: Feeding system: After cleaning and grading, the ore is fed into the vibrating feeder, and the ore is evenly distributed on the conveyor belt through mechanical vibration, forming a single-layer flat state and entering the detection area. X-ray transmission detection: The X-ray source continuously transmits the ore, and the X-ray transmission detection system analyzes the density and structure inside the ore through the X-ray generator and receiver. Image processing: The high-definition image recognition system images the surface features of the ore, and the industrial computer processes it. Through the established model recognition and algorithm, useful minerals and gangue minerals are distinguished. Sorting execution: According to the recognition results, the high-speed actuator drives the gas valve array to sort the ore, blow the gangue minerals into the waste rock tank, and the useful minerals fall into the corresponding sorting bin. V. Technical Advantages High recognition accuracy: The X-ray intelligent ore sorter adopts high-precision X-ray transmission technology, with a recognition accuracy of up to 0.4mm, realizing the detection of the internal features of the ore without blind spots. Strong processing capacity: The equipment can handle ores of different particle sizes, and can effectively sort ores from small particles to blocky ores. Energy saving and environmental protection: Compared with traditional hand sorting and mechanical sorting, the X-ray intelligent ore sorting machine does not require water, which reduces energy consumption and environmental pollution. High degree of intelligence: Combined with artificial intelligence, the sorting machine can self-learn and optimize to adapt to the characteristics and sorting requirements of different ores.   VI. Reliability Analysis The reliability of the X-ray intelligent ore sorting machine depends on multiple factors, including but not limited to: Technical maturity: With the continuous development and improvement of technology, the technical maturity of the X-ray intelligent ore sorting machine continues to improve, and its reliability is enhanced accordingly. Equipment structure design: Reasonable structural design can improve the stability and durability of the equipment and reduce the possibility of failure. Material selection: High-quality materials can ensure that the equipment can work normally in harsh environments and extend its service life. Maintenance and overhaul: Regular maintenance and overhaul are important measures to ensure the reliability of the equipment, which can timely discover and eliminate hidden dangers. Technical support: A strong technical support team can provide rapid fault diagnosis and solutions for the equipment to ensure the continuity of production. The X-ray intelligent sorting machine launched by Mingde Optoelectronics uses high-precision dual-energy mining and transmission, which can not only identify minerals with large density differences and high content, but also identify minerals with small density differences and low content, making mineral separation more accurate. https://www.mdoresorting.com/x-ray-xrt-intelligent-mineral-sorting-machine-according-to-different-density-between-concentrate-and-tailings Ⅶ. Maintenance Cycle Analysis The maintenance cycle of X-ray intelligent ore sorting machine usually depends on the following factors: Operating environment: The environmental conditions of the equipment, such as temperature, humidity, etc., will affect the maintenance cycle. Frequency of use: The higher the frequency of use of the equipment, the shorter the required maintenance cycle. Technical condition: The technical condition of the equipment is good, and the maintenance cycle can be appropriately extended. Manufacturer guidance: Following the manufacturer's maintenance guidelines and recommendations can effectively schedule maintenance cycles. Historical records: The maintenance history of the equipment can help predict future maintenance cycles and needs. Ⅷ. Maintenance Cost Analysis Equipment structure and maintenance difficulty The design of the X-ray intelligent ore sorting machine focuses on simplicity and reliability, and its mechanical structure is relatively simple, reducing potential failure points and maintenance difficulties. In contrast, traditional equipment is more difficult to maintain due to its complex structure, and requires more professional skills and tools. The simplified design of the X-ray intelligent ore sorting machine reduces the difficulty of maintenance, and correspondingly reduces maintenance time and cost. Parts replacement cycle and cost The key components of X-ray intelligent ore sorting machines, such as X-ray tubes and other sensors, are designed with a long service life, reducing the need for frequent replacement of parts, thereby reducing maintenance costs. However, due to the rapid wear and tear of traditional equipment during use, parts often need to be replaced, and the maintenance cost is naturally high. Labor and training costs The X-ray intelligent ore sorting machine is highly automated and can achieve 24-hour unmanned ore sorting, reducing labor costs. Operators only need to perform basic monitoring and abnormal handling, which greatly reduces manpower requirements. In addition, maintenance personnel do not need too much professional training to operate proficiently, further reducing training costs. Preventive and corrective maintenance costs The X-ray intelligent ore sorting machine uses advanced predictive maintenance technology, which can detect potential faults in advance and prevent them, reducing emergency repairs. Traditional equipment often requires more regular inspections and repairs, and has higher maintenance costs. IX. Maintenance Precautions The X-ray intelligent ore sorting machine is a high-tech equipment that uses X-ray and artificial intelligence technology for ore sorting. During daily use and maintenance, matters that need attention mainly include equipment structure inspection, cleaning and maintenance, troubleshooting and repair, regular calibration, replacement of wearing parts, operator training and other aspects. Equipment structure inspection Regularly check whether the structure of the X-ray intelligent ore sorter is complete, including but not limited to whether the moving parts such as the housing, conveyor belt, roller, bearing, etc. are abnormally worn or damaged. Any damage or wear found should be replaced or repaired in time to ensure the normal operation of the equipment. Cleaning and maintenance Keep the equipment clean, especially the X-ray source and photoelectric sensor, to prevent dust and debris from accumulating and affecting the detection accuracy and stability of the equipment. Regularly clean the slag and impurities inside the equipment to avoid blockage and corrosion. Troubleshooting and repair Be familiar with the common faults of the X-ray intelligent ore sorter and their troubleshooting methods, such as the troubleshooting and repair of problems such as the power indicator light not lighting up, the conveyor belt not operating, and the X-ray source not emitting. For problems that cannot be solved immediately, professional technicians should be contacted for support in a timely manner. Regular calibration According to the guidelines provided by the manufacturer, the X-ray intelligent ore sorter should be calibrated regularly to ensure the detection accuracy and stability of the equipment. The calibration work should be performed by experienced technicians. Replacement of wearing parts Pay attention to the wearing parts of the equipment, such as X-ray tubes, conveyor belts, injection valves, etc., and replace them in time when necessary. Use original accessories to ensure that the performance of the equipment is not affected. Operator training Provide necessary training for the staff who operate the X-ray intelligent ore sorter so that they can master the correct operation methods and basic maintenance knowledge. Untrained personnel are not allowed to operate the equipment at will to avoid damage. Overall, maintaining the X-ray intelligent ore sorter is a systematic project, which needs to be started from multiple angles to ensure the long-term and stable operation of the equipment. Through regular inspection, cleaning, calibration and maintenance, the service life of the equipment can be greatly extended, and the work efficiency and sorting accuracy can be improved. At the same time, attention should also be paid to sufficient training of operators to ensure that they can properly handle emergencies and ensure the continuity and safety of production.

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Submit

home

products

whatsApp

contact