内页banner
Beneficiation
  • Causes and Solutions Affecting Low Efficiency of Mineral Processing! Causes and Solutions Affecting Low Efficiency of Mineral Processing! May 31, 2024
    1. Which links in the mineral processing process are likely to affect efficiency? In the mineral processing technology, multiple links may affect the mineral processing efficiency, and the following links are more likely to have a significant impact on the mineral processing efficiency: (1) Pre-election preparation stage: Crushing and Screening: Ore crushing and screening are key steps before mineral processing, which directly affect the efficiency and effect of subsequent mineral processing. In the crushing operation, if the crusher is improperly selected or operated, it may lead to insufficient or excessive crushing of the ore, affecting the efficiency of subsequent grinding and mineral processing. Screening is used to classify the crushed ore according to particle size to provide suitable raw materials for the processing. Grinding and Classification: Grinding is the continuation of the ore crushing process, and its purpose is to separate various useful mineral particles in the ore into monomers for selection. The selection of grinding mills and the control of the grinding process are crucial to the efficiency of mineral processing. The classification operation affects the classification particle size and processing capacity by adjusting parameters such as the size of the classification area, the height of the overflow weir and the speed of the spiral, thereby affecting the efficiency of mineral processing. Selection stage: The properties of the ore, the selection of the beneficiation equipment and the selection of the beneficiation method will affect the efficiency of the beneficiation stage. For example, the particle size of the mineral has an important influence on the flotation efficiency. Too fine a particle size will deteriorate the flotation effect. The selection of the flotation machine speed will also affect the stirring intensity of the slurry and the flotation effect. Dehydration stage after selection: The concentrate obtained by wet beneficiation usually contains a lot of water. The efficiency of the dehydration stage directly affects the quality and output of the concentrate. The dehydration stage includes processes such as concentration, filtration and drying. The effects of these processes are affected by factors such as equipment performance, operation level and the properties of the original ore. Slurry concentration: Appropriate pulp concentration has an important impact on flotation efficiency. Within a certain range, increasing pulp concentration is conducive to the collision and contact between minerals and reagents, thereby improving flotation efficiency. However, excessive pulp concentration will increase reagent consumption, deteriorate aeration effect, and reduce flotation efficiency. Operation and management: The skill level and management level of operators also have an important impact on mineral processing efficiency. Modern and digital management methods can optimize the mineral processing process and improve production efficiency. At the same time, strengthening the management and awareness of mining companies and avoiding management and awareness deviations are also important measures to improve mineral processing efficiency. To sum up, many links in the mineral processing process may affect the efficiency, but factors such as the preparation stage before mineral processing, the separation stage, the dehydration stage after mineral processing, as well as slurry concentration and operation management have the most significant impact on mineral processing efficiency. By optimizing these links and factors, the mineral processing efficiency can be significantly improved, production costs can be reduced, and the sustainable development of the mine can be achieved. 2. In order to optimize the links that affect efficiency in the mineral processing process, we can consider and implement them from the following aspects: (1) Grinding and grading operations: Optimize grinding process parameters: According to the characteristics of the ore, study the grinding index and formulate appropriate grinding process parameters. For the ore dressing plant with "over-grinding" phenomenon, selective grinding technology can be considered. Use efficient grading equipment: Although spiral classifiers are commonly used, their grading efficiency is generally only 20% to 40%. Consider introducing efficient grading equipment such as hydrocyclones or high-frequency vibrating fine screens to improve grading efficiency. However, attention should be paid to the stability of hydrocyclones. (2) Selection of work: Select or improve mineral processing equipment: In flotation operations, the selection of flotation machines is crucial. According to the characteristics of the ore and the flotation process, select or design a suitable flotation machine. At the same time, pay attention to the development of flotation reagents and processes, and adopt the latest flotation technology and reagents. Optimize flotation conditions: According to the properties of the ore, adjust the parameters such as pulp concentration, stirring intensity, and aeration volume during the flotation process to obtain the best flotation effect. (3) Dehydration operation: Introduce advanced dehydration equipment: such as disc vacuum filter, which not only has large processing capacity and good dehydration effect, but also has low energy consumption. Optimize the dehydration process: By adjusting various links in the dehydration process, such as pre-dehydration, filter pressing, etc., the dehydration efficiency can be improved and the moisture content in the concentrate can be reduced. (4) Slurry concentration control: Real-time monitoring and adjustment: By real-time monitoring of pulp concentration, timely adjust the amount of water added during grinding and flotation to ensure that the pulp concentration is within the optimal range. Optimize the use of reagents: During the flotation process, adjust the amount and type of reagents according to the pulp concentration to obtain the best flotation effect. (5) Operation and management: Improve operator skills: Through training and skill improvement, ensure that operators have the necessary mineral processing knowledge and skills and can operate mineral processing equipment proficiently. Introduce a modern management system: Use a digital and automated management system to monitor all aspects of the mineral processing process in real time to improve production efficiency and product quality. Strictly follow the principles of comprehensiveness and pertinence to carry out equipment transformation to ensure that the transformation work can truly improve economic benefits and production efficiency. (6) Strengthen the management of mining companies: Correct the deviations in the management and cognition of mining companies, ensure that managers have geological knowledge and mineral processing experience, and avoid non-geological personnel from conducting mineral processing according to the management model of other industries. Establish a reasonable assessment mechanism, avoid taking economic benefits as the only criterion, and ensure that the basic status of geological exploration work is valued. Through the implementation of the above measures, the links that affect efficiency in the mineral processing process can be optimized, the mineral processing efficiency can be improved, the production cost can be reduced, and the sustainable development of the mine can be achieved. (7) Continuous research and innovation: Encourage and support scientific researchers to conduct research and innovation in mineral processing technology, and continuously develop new mineral processing methods and processes. Strengthen exchanges and cooperation with other countries and regions, and introduce advanced mineral processing technology and equipment. At the same time, in view of the above-mentioned problem of low mineral processing efficiency, the introduction of MINGDE mineral processing equipment can greatly improve the mineral processing efficiency. Its value is mainly reflected in the following aspects: High-precision identification and sorting: MINGDE optoelectronic beneficiation equipment, such as the MINGDE AI sorter, can accurately identify multiple characteristics of non-metallic ores, including color, texture, shape, gloss, etc. This high-precision recognition technology enables ores to be accurately classified and screened, thereby improving the accuracy and efficiency of beneficiation. High efficiency sorting: The equipment has high-speed processing capabilities and can quickly complete the sorting of a large number of non-metallic ores. For example, the heavy-duty visible light artificial intelligence sorting machine product launched by MINGDE Optoelectronic has a sorting and processing capacity of up to 100 tons/hour, greatly improving production efficiency. Energy saving: MINGDE Optoelectronic mineral processing equipment achieves more crushing and less grinding by pre-sorting the granular ore, effectively reducing energy consumption. This optimization can not only improve production efficiency, but also reduce mineral processing costs and improve the economic and ecological benefits of the mineral processing plant. Environmental friendly: Compared with traditional physical and chemical beneficiation, the only energy consumption of photoelectric beneficiation is electricity consumption, and it has zero pollution to the environment. This green beneficiation method meets the current requirements of environmental protection and contributes to the sustainable development of mining production. High level of intelligence: With the development of computer technology and artificial intelligence technology, the intelligence level of Mingde Optoelectronics' mineral processing equipment has been continuously improved. This intelligent equipment can better adapt to the sorting needs of different types and complex ore structures, and improve the flexibility and adaptability of mineral processing. In summary, Mingde Optoelectronics' mineral processing equipment provides strong support for improving mineral processing efficiency through its advantages in high-precision identification, high-efficiency sorting, energy saving and consumption reduction, green environmental protection and high intelligence level. These advantages not only help to improve the efficiency and benefits of mining production, but also help to promote the green, intelligent and sustainable development of mining production.    
  • Application and Advantages of MINGDE AI Sorter in Non-metallic Ores Application and Advantages of MINGDE AI Sorter in Non-metallic Ores Jun 03, 2024
    Non-metallic ores are important resources for the national economy. Ore sorting and processing are of great significance to improving resource utilization and optimizing industrial structure. With the rapid development of AI technology, MINGDE AI sorting machine has shown strong application potential and advantages in the field of non-metallic ore sorting. This article will give a detailed overview of the application of MINGDE AI sorting machine in non-metallic ores, including its technical principles, application characteristics, actual effects and future development trends, in order to provide reference and reference for the intelligent upgrading of the non-metallic ore industry. 1. Technical principles and characteristics of MINGDE AI sorting machine MINGDE AI sorting machine uses advanced AI and computer vision technology to identify and analyze images of non-metallic ores through deep learning algorithms. The equipment uses high-speed cameras to capture the texture, color, shape, gloss, texture and other characteristic information of the ore surface, and uses powerful computing power to process and analyze this information in real time, thereby achieving accurate sorting of non-metallic ores. MINGDE AI sorting machine has the following salient features: High-precision identification: MINGDE AI sorting machine can accurately identify multiple characteristics of non-metallic ores, including color, texture, shape, gloss, etc., thereby achieving accurate classification and screening of ores. High-efficiency sorting: This equipment has high-speed processing capabilities and can quickly complete the sorting of large quantities of non-metallic ores, significantly improving production efficiency. Automated operation: MINGDE AI sorting machine realizes the automated sorting process, reduces manual intervention, reduces labor intensity, and improves production safety. Flexible configuration: The equipment can be flexibly adjusted according to the sorting requirements of different non-metallic ores. It has strong adaptability and can be widely used in various non-metallic ore sorting scenarios.   2. Application of MINGDE AI Sorting Machine in Non-metallic Ores Ore sorting and screening There are many types of non-metallic ores, and different types of ores have significant differences in composition, use and value. MINGDE artificial intelligence sorting machine can accurately classify and screen the ores according to their surface characteristics, and effectively separate the ores and veins in different non-metallic ores, providing convenience for subsequent processing and utilization. Impurity removal and purification Non-metallic ores often contain various impurities, which not only affect the quality of the ore, but also increase the difficulty and cost of subsequent processing. MINGDE AI sorting machine can accurately identify and remove impurities in the ore, improve the purity of the ore, and provide high-quality raw materials for subsequent processing. Particle size analysis and control The particle size of non-metallic ores has an important influence on their performance and application areas. MINGDE AI sorting machine can adjust the corresponding parameters according to application requirements, and perform precise control as required to produce ore products that meet specific requirements. 3. Analysis of the application effect of MINGDE AI sorting machine The application of MINGDE AI sorting machine in non-metallic ores has achieved remarkable results. First, the equipment improves the sorting accuracy and efficiency of non-metallic ores, making ore resources more fully utilized and reducing resource waste. Secondly, through the automated sorting process, manual intervention and labor intensity are reduced, and production safety and efficiency are improved. In addition, MINGDE AI sorter can also be flexibly configured and optimized according to the characteristics of different non-metallic ores, improving the flexibility and adaptability of the sorting process. 4. Future development trend of MINGDE AI sorting machine in non-metallic ores With the continuous advancement of artificial intelligence technology and the expansion of application scenarios, the application of MINGDE AI sorting machine in the field of non-metallic ores will show the following development trends: Technological innovation continues to accelerate With the continuous innovation and development of artificial intelligence technologies such as deep learning and computer vision, the recognition accuracy and processing speed of Mingde artificial intelligence sorting machine will be further improved, providing more efficient and accurate solutions for the sorting of non-metallic ores. Wider application scenarios MINGDE AI sorting machine is not only used in traditional non-metallic ore sorting scenarios, but can also be expanded to more fields. Ores and materials with specific surface characteristics can be sorted. At the same time, the equipment will also be linked with other intelligent equipment and systems to build a more complete non-metallic ore intelligent sorting system. The level of intelligence continues to improve With the integration and application of technologies such as big data and cloud computing, MINGDE AI sorting machine will realize a more intelligent sorting process. By collecting and analyzing sorting data in real time, the equipment can continuously optimize the sorting algorithm and parameter settings to improve sorting accuracy and efficiency. At the same time, the intelligent sorting system will also have adaptive and self-learning capabilities, and can automatically adjust and optimize according to the characteristics of different non-metallic ores. https://www.mdoresorting.com/mingde-ai-sorting-machine-separate-quartzmicafeldspar-from-pegmatite 5. Conclusion The application of MINGDE AI sorting machine in the field of non-metallic ores provides strong support for the effective utilization of ore resources and industrial upgrading. Through the characteristics of high-precision identification, high-efficiency sorting and automated operation, the equipment significantly improves the sorting efficiency and accuracy of non-metallic ores, reduces resource waste and production costs. In the future, with the continuous innovation of technology and the expansion of application scenarios, MINGDE AI sorting machine will play a more important role in the field of non-metallic ores, and promote the intelligent upgrading and sustainable development of the industry. However, we should also recognize that the application of artificial intelligence technology in the field of non-metallic ore sorting still faces some challenges and limitations. For example, the identification and processing of some complex ores may require more advanced algorithms and technical support; therefore, we need to continue to increase research and development efforts to improve the technical level and performance of MINGDE AI sorting machines to promote their wider application in the field of non-metallic ores. In summary, as an important technological achievement in the field of non-metallic ore sorting, MINGDE AI sorting machine has broad application prospects and is full of potential. We have reason to believe that in the future development, INGDE AI sorting machine will make greater contributions to the intelligent upgrading and sustainable development of the non-metallic ore industry with its unique advantages and characteristics.    
  • How to Better Select Ore Based on Ore Characteristics? How to Better Select Ore Based on Ore Characteristics? Jun 04, 2024
    As the core link of ore utilization in the ore industry, ore sorting plays a vital role in improving ore grade and recovery rate. However, with the reduction of high-grade and easy-to-mine ores and the increasing cost of ore sorting, these are two major problems that plague mining companies. Therefore, how to adopt appropriate ore dressing methods and reduce ore dressing costs have become issues that companies need to solve urgently. In order to achieve the best ore processing effect, mining companies can reduce the cost of ore sorting by choosing the ore sorting process. At the beginning of the process design, it is necessary to select according to the ore characteristics and design a suitable and efficient ore dressing process. At the same time, due to the requirements of energy conservation and environmental protection, energy-saving and environmentally friendly ore sorting technology should be adopted to reduce energy consumption and environmental pollution, and reduce ore processing costs. First of all, the ores can be divided into the following categories according to their characteristics: 1. Physical characteristics of ore The physical characteristics of ore are mainly divided into color, shape, texture, hardness, magnetism, density, etc. Different beneficiation methods can be selected according to the physical characteristics of the ore. For ores with large differences in mineral density, such as barite, hematite, asbestos, mica, kaolin, etc., heavy media can be used for beneficiation; magnetic separation is often used for magnetite and pyrrhotite with strong magnetism, semi-pseudo-hematite with medium magnetism, some ilmenite, chromite, and weakly magnetic hematite and rhodochrosite; fluorite, talc, wollastonite, silica, lithium ore, quartz, potassium feldspar, etc. with large differences in appearance characteristics such as color, texture, shape, and gloss often use photoelectric separation. 2. Chemical characteristics of ore Different ores have different chemical characteristics, such as composition, acidity and alkalinity. For example, copper oxide ore is often separated and flotated, while gold ore is extracted by amalgamation, cyanide, thiourea, high temperature chlorination and other methods. 3. Structural characteristics of ore Ore structure refers to the characteristics of mineral particles in the ore:the shape, relative size, inter-embedded relationship of mineral particles or the inter-embedded relationship between mineral particles and mineral aggregates. For example, for impregnated copper-sulfur ore, the preferential flotation process is adopted, and the tailings after copper flotation must be flotted with sulfur again. 4. Ore Origin Environmental Characteristics Different types of ores are formed in different production environments. For example, the Yuanshanzi nickel-molybdenum ore is of sedimentary metamorphic hydrothermal transformation type. According to the characteristics of the ore, rock crushing, roasting, and flotation with reagents are selected. For example, the sedimentary barite ore in Jingtieshan, Huashugou, Sunan, Gansu and Baiyuxiacun, Sichuan, as well as the hydrothermal barite ore associated with sulfide ores and fluorite, are separated by flotation in addition to gravity separation. Ore pre-selection experiment Ore dressing experiments are an important basis for formulating correct ore sorting technology and determining ore sorting equipment. Through ore dressing experiments, ore dressing processes can be optimized and ore dressing costs can be reduced. When conducting ore dressing experiments, a reasonable test plan should be formulated according to ore characteristics and ore sorting requirements, the test process should be optimized, and the test efficiency and accuracy should be improved. During the test, the following points should be noted: 1. Experimental samples should be representative samples of the ore body to ensure the accuracy and reliability of the experiment. 2. The experiment simulated the actual production conditions as much as possible. 3. Conduct statistics and analysis on experimental data, optimize mineral processing process parameters and equipment, and improve mineral processing efficiency and recovery rate. How to choose mineral processing equipment https://www.mdoresorting.com/heavy-duty-ai-ore-sorting-machine-ore-sorter-mineral-separator-sorting-38cm-particles Ore sorting equipment is the key equipment in the mineral processing process. When selecting equipment, it is necessary to fully consider the characteristics and requirements of the ore to select the appropriate equipment. In the process of selecting equipment, performance and cost should be given priority, and factors such as equipment life, wearing parts and operation and maintenance costs should also be considered. At the same time, the choice of manufacturer is also very important, whether it is a professional provider of mining equipment. For example, MINGDE Optoelectronics specializes in the research and development and production of photoelectric mineral processing equipment. Develop a reasonable mineral processing process Formulating a reasonable process during the mineral processing is the key to ensuring the mineral processing effect and reducing the mineral processing cost. Reasonable control of each link can effectively reduce losses and operation and maintenance costs. The specific measures are as follows: 1. Reduce equipment overload and wear. 2. Strictly control the operating parameters of mineral processing equipment. 3. Formulate scientific and reasonable maintenance plans for different equipment, and conduct regular inspections and maintenance to effectively extend the service life of the equipment. In summary, reducing the cost of mineral processing and mineral processing technology should be done from multiple aspects and angles, including reasonable mineral processing process, suitable equipment, control of mineral processing process, rigorous mineral processing experiments, etc. Only by combining various factors,we can the reduction of mineral processing costs and the sustainable development of mining enterprises be achieved.
  • Classification, Uses and Sorting Processes of Various Types of Ores! Classification, Uses and Sorting Processes of Various Types of Ores! Jun 08, 2024
    The classification and use of ores are very wide. We classify them based on many factors such as the chemical composition, physical properties and industrial applications of minerals. The following are the types of metal ores and non-metallic ores that can be roughly sorted. Metal ore Metal ores are ores containing metal elements or metal compounds, and are mainly used to extract metals. Depending on the metals they contain, metal ores can be subdivided into the following categories: 1. Precious metal ores: such as gold, silver, platinum group metal ores, etc., are mainly used in the manufacture of jewelry, currency reserves and some high-tech products. 2. Non-ferrous metal ores: including copper, lead, zinc, aluminum, etc., which are widely used in wires and cables, building materials, automobile manufacturing, aircraft manufacturing, electronic products and other fields. 3. Ferrous metal ores: such as iron ore, manganese ore, and chromium ore, which are mainly used in the production of steel and other alloys. 4. Rare metal ores: such as tantalum, niobium, lithium, etc., are crucial to high-tech industries such as electronics, aerospace, and new energy vehicles. 5. Radioactive ores: such as uranium ore and thorium ore, which are mainly used in nuclear power generation and medical fields. After mining, crushing, beneficiation and refining, these ores can be refined into metals, which are processed into various products and widely used in various industries such as construction, machinery manufacturing, electronics, transportation, aerospace, etc. Non-metallic ores Non-metallic ores contain no or almost no metal elements. They either provide industrial raw materials or are used as decorative and building materials. 1. Chemical raw material ores: such as phosphate rock, potash, limestone, etc., used in the manufacture of fertilizers and chemical products. 2. Gemstones and decorative stones: such as diamonds, rubies, jade, marble, granite, etc., used in jewelry and architectural decoration. 3. Building material ores: such as gypsum, quartz sand, and limestone, used in cement, glass manufacturing and the construction industry. 4. Ceramic and refractory ores: such as kaolin and clay, used to make ceramic utensils and high-temperature resistant materials. 5. Energy minerals: such as coal, oil, and natural gas. Although they do not strictly belong to the traditional mineral classification, they are also important natural resources and are mainly used for energy supply. In addition to being used as a building material, it is also used to manufacture chemicals, medicines, cosmetics, ceramic products, glass products, etc. It is also widely used in agriculture, environmental protection and high-tech industries. In summary, ores are various and have a wide range of uses. From metal ores to non-metallic ores, from energy ores to construction ores and chemical raw material ores, they all play an important role in their respective fields. The mining and utilization of ores is one of the foundations of modern industrial society. However, the mining process needs to consider environmental protection and sustainable development. With the advancement of science and technology and the development of industry, human demand for ores will continue to increase, and the mining and utilization of ores will become more efficient and environmentally friendly. In order to make full use of various metal and non-metallic ore resources, suitable mineral processing technology is selected for separation in combination with the physical and chemical characteristics of the ore. At present, the common mineral processing methods are mainly the following: Flotation: It is a method of separation by treating the physical and chemical properties of the ore surface to make the minerals selectively attach to bubbles. In the process of mineral processing, especially in the treatment of non-ferrous metal ores (such as copper, lead, zinc, sulfur, molybdenum, etc.), flotation is widely used. In addition, some ferrous metals, rare metals and non-metallic ores (such as graphite ore, apatite, etc.) can also be treated by flotation. Gravity separation: It is a method of separation based on the relative density (also called specific gravity) of minerals. By applying fluid dynamics and various mechanical forces in a moving medium (such as water or air), the concentrators of different densities can create suitable loose stratification and separation conditions, thereby achieving the separation of mineral particles of different densities. Magnetic separation: It is a method of separating ores by using the magnetic difference of minerals to generate different forces in the magnetic field of the magnetic separator. It is mainly used for the separation of ferrous metal ores (such as iron, manganese, and chromium), and can also be used for the separation of non-ferrous metal and rare metal ores. Electrostatic separation: It is a separation method based on the difference in the electrical conductivity of minerals. By placing the minerals in a high-voltage electric field, the electrostatic force acts differently due to the different electrical conductivity of the minerals, thereby achieving the separation of minerals. This method is mainly used for the separation of rare metals, non-ferrous metals and non-metallic ores, especially in the separation of sub-mixed coarse concentrates, such as scheelite and cassiterite, zircon, tantalite and niobium ore. Chemical beneficiation: It is a beneficiation technology that uses chemical methods to change the mineral composition and then enriches the target components through other methods. For example, copper ore containing malachite can be leached with dilute sulfuric acid to convert malachite into copper sulfate solution. By replacing the copper ions in the solution with iron filings, metallic copper (sponge copper) can be obtained. Chemical beneficiation is one of the effective methods for processing and comprehensively utilizing some poor, fine, and impure mineral raw materials that are difficult to be selected. It is also one of the important ways to make full use of mineral resources, solve the problems of wastewater, waste residue, and waste gas treatment, realize waste recycling, and protect the environment. Microbial beneficiation: also known as bacterial beneficiation, is a beneficiation method that uses microorganisms such as iron-oxidizing bacteria, sulfur-oxidizing bacteria, and silicate bacteria to remove iron, sulfur, silicon and other elements from ores. By using iron-oxidizing bacteria to oxidize iron, sulfur-oxidizing bacteria to oxidize sulfur, and silicate bacteria to decompose silicon in bauxite, the purpose of desulfurization, iron removal and silicon removal can be achieved. In addition, microbial beneficiation can also be used to recover metals such as copper, uranium, cobalt, manganese, and gold. https://www.mdoresorting.com/mingde-ai-sorting-machine-separate-phosphorite-ore Photoelectric beneficiation: It is a beneficiation method that uses the physical characteristics of the ore to be beneficiated and the gangue to identify and sort. It uses a combination of machinery and electricity to separate minerals by imitating the action of hand selection. It uses the differences in the reflection and transmittance of light of different minerals, such as color, texture, shape, gloss, spots, density and other characteristic differences for identification and sorting. The ore is mainly separated after passing through the feeding system, photoelectric system, electric control system and sorting system. As a leader in the photoelectric mineral processing industry, Mingde Optoelectronics has launched a series of equipment, involving five series and more than 20 types of equipment, mainly artificial intelligence sorting machines, ore color sorting machines, mineral sand sorting machines, X-ray intelligent sorting machines, foreign body removal robots and other products. At present, it is widely used in metal and non-metallic minerals such as quartz, potassium feldspar, calcite, calcium carbonate, dolomite, fluorite, talc, wollastonite, bauxite, pegmatite quartz, limestone, calcium oxide, sponge titanium, silicon slag, gold mine, pebbles, phosphate rock, silica, brucite, tungsten tailings, coal gangue, coal-bearing kaolin, etc.!

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Submit

home

products

whatsApp

contact